Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Remove the deprecated configuration.rrm parameter.

...

PropertyDescription

antenna-gain (integer 0..30)

Overrides the default antenna gain. The master interface of each radio sets the antenna gain for every interface which uses the same radio.

This setting cannot override the antenna gain to be lower than the minimum antenna gain of a radio.
No default value.

beacon-interval (time interval 100ms..1s)

Interval between beacon frames of an AP. Default: 100ms.

Info

The 802.11 standard defines beacon interval in terms of time units (1 TU = 1.024 ms). The actual interval between beacons will be 1 TU for every 1 ms configured.

Note

Every AP running on the same radio (i.e. a master AP and all its 'virtual'/'slave' APs) must use the same beacon interval.

chains (list of integer 0..7 )

Radio chains to use for receiving signals. Defaults to all chains available to the corresponding radio hardware.

country (name of a country)

Determines, which regulatory domain restrictions are applied to an interface. Defaults to "United States".

Note

It is important to set this value correctly to comply with local regulations and ensure interoperability with other devices.

dtim-period (integer 1..255)

Period at which to transmit multicast traffic, when there are client devices in power save mode connected to the AP. Expressed as a multiple of the beacon interval.

Higher values enable client devices to save more energy, but increase network latency.

Default: 1

hide-ssid (no | yes)

  • yes - AP does not include its SSID in beacon frames, and does not reply to probe requests that have broadcast SSID.

  • no - AP includes its SSID in the beacon frames, and replies to probe requests that have broadcast SSID.

Default: no

mode (ap | station)

Interface operation mode

  • ap (default) - interface operates as an access point
  • station - interface acts as a client device, scanning for access points advertising the configured SSID
rrm (no | yes)
  • yes - enable support for 802.11k radio resource measurement
  • no - disable  support for 802.11k radio resource measurement

Default: yes

ssid (string)The name of the wireless network, aka the (E)SSID. No default value.
tx-chains (list of integer 0..7)Radio chains to use for transmitting signals. Defaults to all chains available to the corresponding radio hardware.
tx-power (integer 0..40)A limit on the transmit power (in dBm) of the interface. Can not be used to set power above limits imposed by the regulatory profile. Unset by default.
manager (capsman | capsman-or-local | local)

capsman - the interface will act as CAP only, this option should not be passed via provisioning rules to the CAP

capsman-or-local - the interface will get configuration via CAPsMAN or use its own, if /interface/wifiwave2/cap is not enabled.

local - interface won't contact CAPsMAN in order to get configuration.

...

Properties in this category govern mechanisms for advertising potential roaming candidates to client devices.

PropertyDescription
neighbor-group (string

When sending neighbor reports and BSS transition management requests, an AP will list all other APs within its neighbor group as potential roaming candidates. 

By default, a dynamic neighbor group is created for each set of APs with the same SSID and authentication settings.
APs operating in the 5GHz band are indicated to be preferable to ones operating in the 2.4GHz band.

rrm (no | yes)Enables sending of 802.11k neighbor reports. Default: yes
wnm (no | yes)Enables sending of solicited 802.11v BSS transition management requests. Default: yes

Miscellaneous properties

PropertyDescription
arp (disabled | enabled | local-proxy-arp  | proxy-arp | reply-only)Address Resolution Protocol mode:
  • disabled - the interface will not use ARP
  • enabled - the interface will use ARP (default)
  • local-proxy-arp - the router performs proxy ARP on the interface and sends replies to the same interface
  • proxy-arp - the router performs proxy ARP on the interface and sends replies to other interfaces
  • reply-only - the interface will only reply to requests originated from matching IP address/MAC address combinations which are entered as static entries in the ARP table. No dynamic entries will be automatically stored in the ARP table. Therefore for communications to be successful, a valid static entry must already exist.
arp-timeout (time interval | 'auto')Determines how long a dynamically added ARP table entry is considered valid since the last packet was received from the respective IP address.
Value auto equals to the value ofarp-timeout in/ip settings, which defaults to 30s.
disable-running-check (no | yes)
  • yes - interface's running property will be true whenever the interface is not disabled

  • no (default) - interface's running property will only be true when it has established a link to another device

disabled (no | yes) (X)

Hardware interfaces are disabled by default. Virtual interfaces are not.

mac-address (MAC)

MAC address (BSSID) to use for an interface.

Hardware interfaces default to the MAC address of the associated radio interface.

Default MAC addresses for virtual interfaces are generated by

  1. Taking the MAC address of the associated master interface

  2. Setting the second-least-significant bit of the first octet to 1, resulting in a locally administered MAC address

  3. If needed, incrementing the last octet of the address to ensure it doesn't overlap with the address of another interface on the device

master-interface (interface)

Multiple interface configurations can be run simultaneously on every wireless radio.

Only one of them determines the radio's state (whether it is enabled, what frequency it's using, etc). This  'master' interface, is bound  to a radio with the corresponding radio-mac.

To create additional ('virtual') interface configurations on a radio, they need to be bound to the corresponding master interface.

No default value.

name (string)

A name for the interface. Defaults to wifiN, where N is the lowest integer that has not yet been used for naming an interface.

...