
Scripting

Scripting language manual
Line structure

Command-line
Physical Line
Comments

Example
Line joining

Example
Whitespace between tokens

Scopes
Global scope
Local scope

Keywords
Delimiters
Data types

Constant Escape Sequences
Example

Operators
Arithmetic Operators
Relational Operators
Logical Operators
Bitwise Operators
Concatenation Operators
Other Operators

Variables
Reserved variable names

Commands
Global commands
Menu specific commands

Common commands
import
print parameters

Loops and conditional statements
Loops
Conditional statement

Functions
Catch run-time errors
Operations with Arrays

Script repository
Environment
Job

See also

Scripting language manual
This manual provides an introduction to RouterOS's built-in powerful scripting language.

Scripting host provides a way to automate some router maintenance tasks by means of executing user-defined scripts bounded to some event occurrence.

Scripts can be stored in or can be written directly to . The events used to trigger script execution include, but are not the Script repository the console
limited to the , the , and the generated events. System Scheduler Traffic Monitoring Tool Netwatch Tool

If you are already familiar with scripting in RouterOS, you might want to see our . Tips & Tricks

Line structure

The RouterOS script is divided into a number of command lines. Command lines are executed one by one until the end of the script or until a runtime error
occurs.

https://help.mikrotik.com/docs/display/ROS/Scripting#Scripting-Scriptrepository
https://help.mikrotik.com/docs/display/ROS/Console
https://help.mikrotik.com/docs/display/ROS/Scheduler
https://help.mikrotik.com/docs/display/ROS/Interface+stats+and+monitor-traffic
https://help.mikrotik.com/docs/display/ROS/Netwatch
https://wiki.mikrotik.com/wiki/Manual:Scripting_Tips_and_Tricks

Command-line

The RouterOS console uses the following command syntax:

[prefix] [path] command [uparam] [param=[value]] .. [param=[value]]

[prefix] - ":" or "/" character which indicates if a command is or path. It may not be required. ICE
[path] - relative path to the desired menu level. It may not be required.
command - one of the available at the specified menu level. commands
[uparam] - unnamed parameter, must be specified if the command requires it.
[params] - a sequence of named parameters followed by respective values

The end of the command line is represented by the token or . Sometimes or is not required to end the command line. “;” NEWLINE “;” NEWLINE

Single command inside does not require any end-of-command character. The end of the command is determined by the content of the (), [] or {}
whole script

:if (true) do={ :put "lala" }

Each command line inside another command line starts and ends with square brackets "[]" . (command concatenation)

:put [/ip route get [find gateway=1.1.1.1]];

Notice that the code above contains three command lines:

:put
/ip route get
find gateway=1.1.1.1

Command-line can be constructed from more than one physical line by following . line joining rules

Physical Line

A physical line is a sequence of characters terminated by an end-of-line (EOL) sequence. Any of the standard platform line termination sequences can be
used:

Unix – ASCII LF;
Windows – ASCII CR LF;
mac – ASCII CR;

Standard C conventions for newline characters can be used (the \n character).

Comments

The following rules apply to a comment:

A comment starts with a hash character (#) and ends at the end of the physical line.
RouterOS does not support multiline comments.
If a character appears inside the string it is not considered a comment.#

Example

this is a comment
next line comment
:global a; # another valid comment

:global myStr "part of the string # is not a comment"

Line joining

Two or more physical lines may be joined into logical lines using the backslash character (\).

The following rules apply to using backslash as a line-joining tool:

https://help.mikrotik.com/docs/display/ROS/Scripting#Scripting-Commands
https://help.mikrotik.com/docs/display/ROS/Scripting#Scripting-Commands
https://help.mikrotik.com/docs/display/ROS/Scripting#Scripting-OtherOperators
https://help.mikrotik.com/docs/display/ROS/Scripting#Scripting-Linejoining

A line ending in a backslash cannot carry a comment.
A backslash does not continue a comment.
A backslash does not continue a token except for string literals.
A backslash is illegal elsewhere on a line outside a string literal.

Example

:if ($a = true \
 and $b=false) do={ :put "$a $b"; }
:if ($a = true \ # bad comment
 and $b=false) do={ :put "$a $b"; }
comment \
 continued - invalid (syntax error)

Whitespace between tokens

Whitespace can be used to separate tokens. Whitespace is necessary between two tokens only if their concatenation could be interpreted as a different
token. Example:

{
 :local a true; :local b false;
whitespace is not required
 :put (a&&b);
whitespace is required
 :put (a and b);
}

Whitespace characters are not allowed

between '<parameter>='
between 'from=' 'to=' 'step=' 'in=' 'do=' 'else='

Example:

#incorrect:
:for i from = 1 to = 2 do = { :put $i }
#correct syntax:
:for i from=1 to=2 do={ :put $i }
:for i from= 1 to= 2 do={ :put $i }

#incorrect
/ip route add gateway = 3.3.3.3
#correct
/ip route add gateway=3.3.3.3

Scopes

Variables can be used only in certain regions of the script called scopes. These regions determine the visibility of the variable. There are two types of
scopes - global and local. A variable declared within a block is accessible only within that block and blocks enclosed by it, and only after the point of
declaration.

Global scope

Global scope or root scope is the default scope of the script. It is created automatically and can not be turned off.

Local scope

User can define their own groups to block access to certain variables, these scopes are called local scopes. Each local scope is enclosed in curly braces
("{ }").

{
 :local a 3;
 {
 :local b 4;
 :put ($a+$b);
 } #line below will show variable b in light red color since it is not defined in scope
 :put ($a+$b);
}

In the code above variable, b has local scope and will not be accessible after a closing curly brace.

So for example, the defined local variable will not be visible in the next command line and will generate a syntax error

[admin@MikroTik] > :local myVar a;
[admin@MikroTik] > :put $myVar
syntax error (line 1 column 7)

Note that even variable can be defined as global, it will be available only from its scope unless it is not referenced to be visible outside of the scope.

{
 :local a 3;
 {
 :global b 4;
 }
 :put ($a+$b);
}

The code above will output 3, because outside of the scope b is not visible.

The following code will fix the problem and will output 7:

{
 :local a 3;
 {
 :global b 4;
 }
 :global b;
 :put ($a+$b);
}

Keywords

The following words are keywords and cannot be used as variable and function names:

and or in

Delimiters

The following tokens serve as delimiters in the grammar:

() [] {} : ; $ /

Data types

RouterOS scripting language has the following data types:

Each line written in the terminal is treated as local scope

Do not define global variables inside local scopes.

Type Description

num (number) - 64bit signed integer, possible hexadecimal input;

bool (boolean) - values can bee or ; true false

str (string) - character sequence;

ip - IP address;

ip-prefix - IP prefix;

ip6 - IPv6 address

ip6-prefix - IPv6 prefix

id (internal ID) - hexadecimal value prefixed by '*' sign. Each menu item has an assigned unique number - internal ID;

time - date and time value;

array - sequence of values organized in an array;

nil - default variable type if no value is assigned;

Constant Escape Sequences

Following escape sequences can be used to define certain special characters within a string:

\" Insert double quote

\\ Insert backslash

\n Insert newline

\r Insert carriage return

\t Insert horizontal tab

\$ Output $ character. Otherwise, $ is used to link the variable.

\? Output ? character. Otherwise ? is used to print "help" in the console. Removed since v7.1rc2

_ - space

\a - BEL (0x07)

\b - backspace (0x08)

\f - form feed (0xFF)

\v Insert vertical tab

\xx A print character from hex value. Hex numbers should use capital letters.

Example

:put "\48\45\4C\4C\4F\r\nThis\r\nis\r\na\r\ntest";

which will show on the display
HELLO

This

is

a

test

Operators

Arithmetic Operators

Usual arithmetic operators are supported in the RouterOS scripting language

Operator Description Example

"+" binary addition :put (3+4);

"-" binary subtraction :put (1-6);

"*" binary multiplication :put (4*5);

"/" binary division :put (10 / 2); :put ((10)/2)

"%" modulo operation :put (5 % 3);

"-" unary negation { :local a 1; :put (-a); }

Note: for the division to work you have to use braces or spaces around the dividend so it is not mistaken as an IP address

Relational Operators

Operator Description Example

"<" less :put (3<4);

">" greater :put (3>4);

"=" equal :put (2=2);

"<=" less or equal

">=" greater or equal

"!=" not equal

Logical Operators

Operator Description Example

“!” logical NOT :put (!true);

“&&”, “and” logical AND :put (true&&true)

“||”, “or” logical OR :put (true||false);

“in” :put (1.1.1.1/32 in 1.0.0.0/8);

Bitwise Operators

Bitwise operators are working on number, IP, and IPv6 address . data types

Operator Description Example

“~” bit inversion :put (~0.0.0.0)

:put (~::ffff)

“|” bitwise OR. Performs logical OR operation on each pair of corresponding bits. In each pair the result is
“1” if one of the bits or both bits is “1”, otherwise the result is “0”.

:put (192.168.88.0|0.

0.0.255)

:put (2001::1|::ffff)

“^” bitwise XOR. The same as OR, but the result in each position is “1” if two bits are not equal, and “0” if the
bits are equal.

:put (1.1.1.1^255.

255.0.0)

:put (2001::ffff:1^::

ffff:0)

https://help.mikrotik.com/docs/display/ROS/Scripting#Scripting-Datatypes

“&” bitwise AND. In each pair, the result is “1” if the first and second bit is “1”. Otherwise, the result is “0”. :put (192.168.88.77

&255.255.255.0)

:put (2001::

1111&ffff::)

“<<” left shift by a given amount of bits, not supported for IPv6 address data type :put (192.168.88.77

<<8)

“>>” right shift by a given amount of bits, not supported for IPv6 address data type :put (192.168.88.77

>>24)

Calculate the subnet address from the given IP and CIDR Netmask using the "&" operator:

{
:local IP 192.168.88.77;
:local CIDRnetmask 255.255.255.0;
:put ($IP&$CIDRnetmask);
}

Get the last 8 bits from the given IP addresses:

 :put (192.168.88.77&0.0.0.255);

Use the "|" operator and inverted CIDR mask to calculate the broadcast address:

{
:local IP 192.168.88.77;
:local Network 192.168.88.0;
:local CIDRnetmask 255.255.255.0;
:local InvertedCIDR (~$CIDRnetmask);
:put ($Network|$InvertedCIDR)
}

Concatenation Operators

Operator Description Example

"." concatenates two strings :put ("concatenate" . " " . "string");

"," concatenates two arrays or adds an element to the array :put ({1;2;3} , 5);

It is possible to add variable values to strings without a concatenation operator:

:global myVar "world";

:put ("Hello " . $myVar);
next line does the same as above
:put "Hello $myVar";

By using $[] and $() in the string it is possible to add expressions inside strings:

:local a 5;
:local b 6;
:put " 5x6 = $($a * $b)";

:put " We have $[:len [/ip route find]] routes";

Other Operators

Operator Description Example

“[]” command substitution. Can contain only a single command line :put [:len "my test string";];

“()” subexpression or grouping operator :put ("value is " . (4+5));

“$” substitution operator :global a 5; :put $a;

“~” the binary operator that matches value against POSIX extended regular
expression

Print all routes whose gateway ends with 202
/ip route print where gateway~"^[0-9 \\.]

*202\$"

“->” Get an array element by key [admin@x86] >:global aaa {a=1;b=2}
[admin@x86] > :put ($aaa->"a")
1
[admin@x86] > :put ($aaa->"b")
2

Variables

The scripting language has two types of variables:

global - accessible from all scripts created by the current user, defined by keyword; global
local - accessible only within the current , defined by keyword. scope local

There can be variables. When a variable is undefined, the parser will try to look for variables set, for example, by lease-script or oundefined DHCP Hotspot
n-login

Every variable, except for built-in RouterOS variables, must be declared before usage by local or global keywords. Undefined variables will be marked as
undefined and will result in a compilation error. Example:

following code will result in compilation error, because myVar is used without declaration
:set myVar "my value";
:put $myVar

Correct code:

:local myVar;
:set myVar "my value";
:put $myVar;

The exception is when using variables set, for example, by DHCP lease-script

/system script
add name=myLeaseScript policy=\
 ftp,reboot,read,write,policy,test,winbox,password,sniff,sensitive,api \
 source=":log info \$leaseActIP\r\
 \n:log info \$leaseActMAC\r\
 \n:log info \$leaseServerName\r\
 \n:log info \$leaseBound"

/ip dhcp-server set myServer lease-script=myLeaseScript

Valid characters in variable names are letters and digits. If the variable name contains any other character, then the variable name should be put in double
quotes. Example:

#valid variable name
:local myVar;
#invalid variable name
:local my-var;
#valid because double quoted
:global "my-var";

https://help.mikrotik.com/docs/display/ROS/Scripting#Scripting-Scopes
https://help.mikrotik.com/docs/display/ROS/Scripting#Scripting-Scopes
https://help.mikrotik.com/docs/display/ROS/Scripting#Scripting-Scopes
https://help.mikrotik.com/docs/display/ROS/DHCP
https://help.mikrotik.com/docs/pages/viewpage.action?pageId=56459266

If a variable is initially defined without value then is set to , otherwise, a data type is determined automatically by the scripting the variable data type nil
engine. Sometimes conversion from one data type to another is required. It can be achieved using . Example: data conversion commands

#convert string to array
:local myStr "1,2,3,4,5";
:put [:typeof $myStr];
:local myArr [:toarray $myStr];
:put [:typeof $myArr]

Variable names are case-sensitive.

:local myVar "hello"
following line will generate error, because variable myVAr is not defined
:put $myVAr
correct code
:put $myVar

Set command without value will un-define the variable (remove from environment, new in v6.2)

#remove variable from environment
:global myVar "myValue"
:set myVar;

Use quotes on the full variable name when the name of the variable contains operators. Example:

:local "my-Var";
:set "my-Var" "my value";
:put $"my-Var";

Reserved variable names

All built-in RouterOS properties are reserved variables. Variables that will be defined the same as the RouterOS built-in properties can cause errors. To
avoid such errors, use custom designations.

For example, the following script will not work:

{
:local type "ether1";
/interface print where name=$type;
}

But will work with different defined variables:

 {
:local customname "ether1";
/interface print where name=$customname;
}

Commands

Global commands

Every global command should start with token, otherwise, it will be treated as a variable. the ":"

Command Syntax Description Example

/ go to the root menu

.. go back by one menu level

https://help.mikrotik.com/docs/display/ROS/Scripting#Scripting-Datatypes
https://help.mikrotik.com/docs/display/ROS/Scripting#Scripting-Globalcommands

? list all available menu commands and brief descriptions

global :global <var>

[<value>]

define a global variable :global myVar "something"; :put

$myVar;

local :local <var>

[<value>]

define the local variable { :local myLocalVar "I am local"; :

put $myVar; }

beep :beep <freq>

<length>

beep built-in speaker

convert :convert from=

[arg] to=[arg]

Converts specified value from one format to another. By default uses an
automatically parsed value, if the "from" format is not specified (for
example, "001" becomes "1", "10.1" becomes "10.0.0.1", etc.).

from specifies the format of the value - base32, base64, hex, raw, rot13,
.url

to specifies the format of the output value - base32, base64, hex, raw,
.rot13, url

:put [:convert 001 to=hex]

31

:put [:convert [/ip dhcp-client

/option/get hostname raw-value]

from=hex to=raw]

MikroTik

delay :delay <time> do nothing for a given period of time

environment :environment

print <start>

print initialized variable information :global myVar true; :environment

print;

error :error <output> Generate console error and stop executing the script

execute :execute

<expression>

Execute the script in the background. The result can be written in the file
by setting file" parameter or printed to the CLI by setting "as-string". a "

When using the "as-string" parameter executed script is blocked (not
executed in the background).

Executed script can not be larger than 64kB

{
:local j [:execute {
/interface print follow where
[:log info ~Sname~]}];
:delay 10s;
:do { /system script job
remove $j } on-error={}
}

find :find <arg>

<arg> <start>

return position of a substring or array element :put [:find "abc" "a" -1];

jobname :jobname return current script name
Limit script execution to single instance

:if ([/system script job
print count-only as-value
where script=[:jobname]] >
1) do={
 :error "script instance
already running"
 }

len :len <expression> return string length or array element count :put [:len "length=8"];

log :log <topic>

<message>

write a message to . Available topics are the system log "debug,
error, info and warning"

:log info "Hello from script";

parse :parse

<expression>

parse the string and return parsed console commands. Can be used as a
function.

:global myFunc [:parse ":put

hello!"];

$myFunc;

pick :pick <var>

<start>[<count>]

return range of elements or substring. If the count is not specified, will
return only one element from an array.

var - value to pick elements from
start - element to start picking from (the first element index is 0)
count - number of elements to pick starting from the first element
with index=0

[admin@MikroTik] > :put [:
pick "abcde" 1 3]
bc

put :put <expression> put the supplied argument into the console :put "Hello world"

https://help.mikrotik.com/docs/display/ROS/Log

resolve :resolve <arg> return the IP address of the given DNS name :put [:resolve " "];www.mikrotik.com

retry :retry
command=<expr>
delay=[num] max=
[num] on-error=<expr>

Try to execute the given command "max" amount of times with a given
"delay" between tries. On failure, execute the expression given in the "on-
error" block

:retry command={abc} delay=1 max=2 on-error=
{:put "got error"}
got error

:retry command={abc} delay=1
max=2 on-error={:put "got
error"}
got error

typeof :typeof <var> the return data type of variable :put [:typeof 4];

rndnum :rndnum from=

[num] to=[num]

random number generator :put [:rndnum from=1 to=99];

rndstr :rndstr from=

[str] length=

[num]

Random string generator.

from specifies characters to construct the string from and defaults to all
ASCII letters and numerals.

 specifies the length of the string to create and defaults to 16.length

:put [:rndnum from="abcdef%^&"

length=33];

set :set <var>

[<value>]

assign value to a declared variable. :global a; :set a true;

terminal :terminal terminal related commands

time :time

<expression>

return interval of time needed to execute the command :put [:time {:for i from=1 to=10 do=

{ :delay 100ms }}];

timestamp :timestamp returns the time since epoch, where epoch is January 1, 1970 (Thursday),
not counting leap seconds [admin@MikroTik] > :put [:

timestamp]
2735w21:41:43.481891543
or
[admin@MikroTik] > :put [:
timestamp]
2735w1d21:41:43.481891543
with the day offset

toarray :toarray <var> convert a variable to the array

tobool :tobool <var> convert a variable to boolean

toid :toid <var> convert a variable to internal ID

toip :toip <var> convert a variable to IP address

toip6 :toip6 <var> convert a variable to IPv6 address

tonum :tonum <var> convert a variable to an integer

tostr :tostr <var> convert a variable to a string

totime :totime <var> convert a variable to time

Menu specific commands

Common commands

The following commands are available from most sub-menus:

Command Syntax Description

add add

<param>=<value>.

.<param>=<value>

add new item

remove remove <id> remove selected item

http://www.mikrotik.com

enable enable <id> enable selected item

disable disable <id> disable selected item

set set <id>

<param>=<value>.

.<param>=<value>

change selected items parameter, more than one parameter can be specified at the time. The parameter can
be unset by specifying '!' before the parameter.

Example:
/ip firewall filter add chain=blah action=accept protocol=tcp port=123 nth=4,2

print

set 0 !port chain=blah2 !nth protocol=udp

get get <id>

<param>=<value>

get the selected item's parameter value

print print

<param><param>=

[<value>]

print menu items. Output depends on the print parameters specified. The most common print parameters are
described here

export export

[file=<value>]

export configuration from the current menu and its sub-menus (if present). If the file parameter is specified
output will be written to the file with the extension '.rsc', otherwise the output will be printed to the console.
Exported commands can be imported by import command

edit edit <id>

<param>

edit selected items property in the built-in text editor

find find

<expression>

Returns list of internal numbers for items that are matched by given expression. For example: :put [
/interface find name~"ether"]

import

The import command is available from the root menu and is used to import configuration from files created by command or written manually by an export
hand.

print parameters

Several parameters are available for print command:

Parameter Description Example

append

as-value print output as an array of parameters and its values :put [/ip address print as-

value]

brief print brief description

detail print detailed description, the output is not as readable as brief output but may be useful
to view all parameters

count-only print only count of menu items

file print output to a file

follow print all current entries and track new entries until ctrl-c is pressed, very useful when
viewing log entries

/log print follow

follow-only print and track only new entries until ctrl-c is pressed, very useful when viewing log entries /log print follow-only

from print parameters only from specified item /user print from=admin

interval continuously print output in a selected time interval, useful to track down changes where f
is not acceptableollow

/interface print interval=2

terse show details in a compact and machine-friendly format

value-list show values single per line (good for parsing purposes)

https://help.mikrotik.com/docs/display/ROS/Scripting#Scripting-printparameters
https://help.mikrotik.com/docs/display/ROS/Scripting#Scripting-import
https://help.mikrotik.com/docs/display/ROS/Scripting#Scripting-Commoncommands

without-
paging

If the output does not fit in the console screen then do not stop, print all information in one
piece

where expressions followed by where parameters can be used to filter outmatched entries /ip route print where

interface="ether1"

More than one parameter can be specified at a time, for example, /ip route print count-only interval=1 where interface="ether1"

Loops and conditional statements

Loops

Command Syntax Description

do..while :do { <commands> } while=(<conditions>); :while (<conditions>)

do={ <commands> };

execute commands until a given
condition is met.

for :for <var> from=<int> to=<int> step=<int> do={ <commands> } execute commands over a given number
of iterations

foreach :foreach <var> in=<array> do={ <commands> }; execute commands for each element in
a list

Conditional statement

Command Syntax Description

if :if (<condition>) do={<commands>} else=

{<commands>} <expression>

If a given condition is then execute commands in the block, otherwise true do
execute commands in the block if specified. else

Example:

{
 :local myBool true;
 :if ($myBool = false) do={ :put "value is false" } else={ :put "value is true" }
}

Functions

Scripting language does not allow you to create functions directly, however, you could use :parse command as a workaround.

Starting from v6.2 new syntax is added to easier define such functions and even pass parameters. It is also possible to return function value with co :return
mmand.

See examples below:

#define function and run it
:global myFunc do={:put "hello from function"}
$myFunc

output:
hello from function

#pass arguments to the function
:global myFunc do={:put "arg a=$a"; :put "arg '1'=$1"}
$myFunc a="this is arg a value" "this is arg1 value"

output:
arg a=this is arg a value
arg '1'=this is arg1 value

Notice that there are two ways how to pass arguments:

pass arg with a specific name ("a" in our example)
pass value without arg name, in such case arg "1", "2" .. "n" is used.

Return example

:global myFunc do={ :return ($a + $b)}
:put [$myFunc a=6 b=2]

output:
8

You can even clone an existing script from the script environment and use it as a function.

#add script
/system script add name=myScript source=":put \"Hello $myVar !\""

:global myFunc [:parse [/system script get myScript source]]
$myFunc myVar=world

output:
Hello world !

For example:

:global my2 "123"

:global myFunc do={ :global my2; :put $my2; :set my2 "lala"; :put $my2 }
$myFunc my2=1234
:put "global value $my2"

The output will be:

1234
lala
global value 123

Nested function example

Note: to call another function its name needs to be declared (the same as for variables)

:global funcA do={ :return 5 }
:global funcB do={
 :global funcA;
 :return ([$funcA] + 4)
}
:put [$funcB]

Output:
9

Catch run-time errors

Starting from v6.2 scripting has the ability to catch run-time errors.

For example, the [code]:reslove[/code] command if failed will throw an error and break the script.

[admin@MikroTik] > { :put [:resolve www.example.com]; :put "lala";}
failure: dns name does not exist

Now we want to catch this error and proceed with our script:

If the function contains a defined global variable that names match the name of the passed parameter, then the globally defined variable is
ignored, for compatibility with scripts written for older versions. This feature can change in future versions. Avoid using parameters with the
same name as global variables.

:do {
 :put [:resolve www.example.com];
} on-error={ :put "resolver failed"};
:put "lala"

output:

resolver failed
lala

Operations with Arrays

Warning: Key name in the array contains any character other than a lowercase character, it should be put in quotes

For example:

[admin@ce0] > {:local a { "aX"=1 ; ay=2 }; :put ($a->"aX")}
1

Loop through keys and values

"foreach" command can be used to loop through keys and elements:

[admin@ce0] > :foreach k,v in={2; "aX"=1 ; y=2; 5} do={:put ("$k=$v")}

0=2
1=5
aX=1
y=2

If the "foreach" command is used with one argument, then the element value will be returned:

[admin@ce0] > :foreach k in={2; "aX"=1 ; y=2; 5} do={:put ("$k")}

2
5
1
2

Note: If the array element has a key then these elements are sorted in alphabetical order, elements without keys are moved before elements with keys and
their order is not changed (see example above).

Change the value of a single array element

[admin@MikroTik] > :global a {x=1; y=2}
[admin@MikroTik] > :set ($a->"x") 5
[admin@MikroTik] > :environment print
a={x=5; y=2}

Script repository
Sub-menu level: /system script

Contains all user-created scripts. Scripts can be executed in several different ways:

on event - scripts are executed automatically on some facility events (, ,)scheduler netwatch VRRP
by another script - running script within the script is allowed
manually - from console executing run command or in winbox a

Note: Only scripts (including schedulers, netwatch, etc) with equal or higher permission rights can execute other scripts.

Property Description

https://help.mikrotik.com/docs/display/ROS/Scheduler
https://help.mikrotik.com/docs/display/ROS/Netwatch
https://help.mikrotik.com/docs/display/ROS/VRRP

comment (; Default:)string Descriptive comment for the script

dont-require-permissions (; Default:)yes | no no Bypass permissions check when the script is being executed, useful when scripts are being
executed from services that have limited permissions, such as Netwatch

name (; Default:)string "Script[num]" name of the script

policy (; Default: ftp,reboot,read,write,policy,string
test,password,sniff,sensitive,romon)

list of applicable policies:

ftp - can log on remotely via FTP and send and retrieve files from the router
password - change passwords
policy - manage user policies, add and remove user
read - can retrieve the configuration
reboot - can reboot the router
sensitive - allows changing "hide sensitive" parameter
sniff - can run sniffer, torch, etc
test - can run ping, traceroute, bandwidth test
write - can change the configuration

Read more detailed policy descriptions here

source (;)string Script source code

Read-only status properties:

Property Description

last-started ()date Date and time when the script was last invoked.

owner ()string The user who created the script

run-count ()integer Counter that counts how many times the script has been executed

Menu specific commands

Command Description

run ()run [id|name] Execute the specified script by ID or name

Environment

Sub-menu level:

/system script environment

/environment

Contains all user-defined variables and their assigned values.

[admin@MikroTik] > :global example;
[admin@MikroTik] > :set example 123
[admin@MikroTik] > /environment print
"example"=123

Read-only status properties:

Property Description

name ()string Variable name

user ()string The user who defined variable

value () The value assigned to a variable

Job

Sub-menu level: /system script job

https://wiki.mikrotik.com/wiki/Manual:Tools/Netwatch
https://help.mikrotik.com/docs/display/ROS/User

Contains a list of all currently running scripts.
Read-only status properties:

Property Description

owner ()string The user who is running the script

policy ()array List of all policies applied to the script

started ()date Local date and time when the script was started

See also
Scripting Examples
Manual: Scripting Tips and Tricks

https://help.mikrotik.com/docs/display/ROS/Scripting+examples
https://wiki.mikrotik.com/wiki/Manual:Scripting_Tips_and_Tricks

	Scripting

