
1.
2.

Queues
Overview

Rate limitation principles
Simple Queue

Configuration example
Queue Tree

Configuration example
Queue Types

Kinds
FIFO
RED
SFQ
PCQ
CoDel
FQ-Codel
CAKE

Interface Queue
Queue load visualization in GUI

Overview
A queue is a collection of data packets collectively waiting to be transmitted by a network device using a pre-defined structure methodology. Queuing
works almost on the same methodology used at banks or supermarkets, where the customer is treated according to its arrival.

Queues are used to:

limit data rate for certain IP addresses, subnets, protocols, ports, etc.;
limit peer-to-peer traffic;
packet prioritization;
configure traffic bursts for traffic acceleration;
apply different time-based limits;
share available traffic among users equally, or depending on the load of the channel

Queue implementation in MikroTik RouterOS is based on Hierarchical Token Bucket (HTB). HTB allows to the creation of a hierarchical queue structure
and determines relations between queues. These hierarchical structures can be attached at two different places, the illustrate both Packet Flow diagram inp

 and chains.ut postrouting

There are two different ways how to configure queues in RouterOS:

/queue simple menu - designed to ease configuration of simple, every day queuing tasks (such as single client upload/download limitation, p2p
traffic limitation, etc.).
/queue tree menu - for implementing advanced queuing tasks (such as global prioritization policy, user group limitations). Requires marked packet
flows from facility./ip firewall mangle

RouterOS provides a possibility to configure queue in 8 levels - the first level is an interface queue from "/queue interface" menu and the other 7 are lower-
level queues that can be created in Queue Simple and/or Queue Tree.

Rate limitation principles

Rate limiting is used to control the rate of traffic flow sent or received on a network interface. Traffic which rate that is less than or equal to the specified
rate is sent, whereas traffic that exceeds the rate is dropped or delayed.

Rate limiting can be performed in two ways:

discard all packets that exceed rate limit – rate-limiting (dropper or shaper) (100% rate limiter when queue-size=0)
delay packets that exceed specific rate limit in the queue and transmit its when it is possible – (100% rate equalizing rate equalizing (scheduler)
when)queue-size=unlimited

Next figure explains the difference between and rate :rate limiting equalizing

https://help.mikrotik.com/docs/display/ROS/Packet+Flow+in+RouterOS
https://help.mikrotik.com/docs/display/ROS/Basic+Concepts

As you can see in the first case all traffic exceeds a specific rate and is dropped. In another case, traffic exceeds a specific rate and is delayed in the
queue and transmitted later when it is possible, but note that the packet can be delayed only until the queue is not full. If there is no more space in the
queue buffer, packets are dropped.

For each queue we can define two rate limits:

CIR (Committed Information Rate) – (in RouterOS) worst-case scenario, the flow will get this amount of traffic rate regardless of other limit-at
traffic flows. At any given time, the bandwidth should not fall below this committed rate.
MIR (Maximum Information Rate) – (in RouterOS) best-case scenario, the maximum available data rate for flow, if there is free any part max-limit
of the bandwidth.

Simple Queue

/queue simple

A simple queue is a plain way how to limit traffic for a particular target. Also, you can use simple queues to build advanced QoS applications. They have
useful integrated features:

peer-to-peer traffic queuing;
applying queue rules on chosen time intervals;
prioritization;
using multiple packet marks from /ip firewall mangle
traffic shaping (scheduling) of bidirectional traffic (one limit for the total of upload + download)

Configuration example
In the following example, we have one SOHO device with two connected units PC and Server.

Simple queues have a - each packet must go through every queue until it reaches one queue which conditions fit packet parameters strict order
or until the end of the queues list is reached. For example, In the case of 1000 queues, a packet for the last queue will need to proceed through
999 queues before it will reach the destination.

We have a 15 Mbps connection available from ISP in this case. We want to be sure the server receives enough traffic, so we will configure a simple queue
with a parameter to guarantee a server to receive 5Mbps:limit-at

/queue simple
add limit-at=5M/5M max-limit=15M/15M name=queue1 target=192.168.88.251/32

That is all. The server will get 5 Mbps of traffic rate regardless of other traffic flows. If you are using the default configuration, be sure the FastTrack rule is
disabled for this particular traffic, otherwise, it will bypass Simple Queues and they will not work.

Queue Tree
/queue tree

The queue tree creates only a one-directional queue in one of the HTBs. It is also the only way how to add a queue on a separate interface. This way it is
possible to ease mangle configuration - you don't need separate marks for download and upload - only the upload will get to the Public interface and only
the download will get to a Private interface. The main difference from Simple Queues is that the - all traffic passes it together.Queue tree is not ordered

Configuration example
In the following example, we will mark all the packets coming from preconfigured and will limit the traffic with a queue tree based on in-interface-list=LAN
these packet marks.

Let`s create a firewall address-list:

[admin@MikroTik] > /ip firewall address-list
add address=www.youtube.com list=Youtube
[admin@MikroTik] > ip firewall address-list print
Flags: X - disabled, D - dynamic
 # LIST
ADDRESS CREATION-TIME
TIMEOUT
 0 Youtube www.youtube.
com oct/17/2019 14:47:11
 1 D ;;; www.youtube.com
 Youtube
216.58.211.14 oct/17/2019 14:47:11
 2 D ;;; www.youtube.com
 Youtube
216.58.207.238 oct/17/2019 14:47:11
 3 D ;;; www.youtube.com
 Youtube
216.58.207.206 oct/17/2019 14:47:11
 4 D ;;; www.youtube.com
 Youtube
172.217.21.174 oct/17/2019 14:47:11
 5 D ;;; www.youtube.com
 Youtube
216.58.211.142 oct/17/2019 14:47:11
 6 D ;;; www.youtube.com
 Youtube
172.217.22.174 oct/17/2019 14:47:21
 7 D ;;; www.youtube.com
 Youtube
172.217.21.142 oct/17/2019 14:52:21

Mark packets with firewall mangle facility:

[admin@MikroTik] > /ip firewall mangle
add action=mark-packet chain=forward dst-address-list=Youtube in-interface-list=LAN new-packet-mark=pmark-
Youtube passthrough=yes

Configure the queue tree based on previously marked packets:

[admin@MikroTik] /queue tree
add max-limit=5M name=Limiting-Youtube packet-mark=pmark-Youtube parent=global

Check Queue tree stats to be sure traffic is matched:

[admin@MikroTik] > queue tree print stats
Flags: X - disabled, I - invalid
 0 name="Limiting-Youtube" parent=global packet-mark=pmark-Youtube rate=0 packet-rate=0 queued-bytes=0 queued-
packets=0 bytes=67887 packets=355 dropped=0

Queue Types
/queue type

This sub-menu list by default created queue types and allows to add of new user-specific ones.

By default RouterOS creates the following pre-defined queue types:

[admin@MikroTik] > /queue type print
Flags: * - default
 0 * name="default" kind=pfifo pfifo-limit=50

 1 * name="ethernet-default" kind=pfifo pfifo-limit=50

 2 * name="wireless-default" kind=sfq sfq-perturb=5 sfq-allot=1514

 3 * name="synchronous-default" kind=red red-limit=60 red-min-threshold=10 red-max-threshold=50 red-burst=20
red-avg-packet=1000

 4 * name="hotspot-default" kind=sfq sfq-perturb=5 sfq-allot=1514

 5 * name="pcq-upload-default" kind=pcq pcq-rate=0 pcq-limit=50KiB pcq-classifier=src-address pcq-total-
limit=2000KiB pcq-burst-rate=0 pcq-burst-threshold=0 pcq-burst-time=10s pcq-src-address-mask=32
 pcq-dst-address-mask=32 pcq-src-address6-mask=128 pcq-dst-address6-mask=128

 6 * name="pcq-download-default" kind=pcq pcq-rate=0 pcq-limit=50KiB pcq-classifier=dst-address pcq-total-
limit=2000KiB pcq-burst-rate=0 pcq-burst-threshold=0 pcq-burst-time=10s pcq-src-address-mask=32
 pcq-dst-address-mask=32 pcq-src-address6-mask=128 pcq-dst-address6-mask=128

 7 * name="only-hardware-queue" kind=none

 8 * name="multi-queue-ethernet-default" kind=mq-pfifo mq-pfifo-limit=50

 9 * name="default-small" kind=pfifo pfifo-limit=10

All MikroTik products have default queue type " with "kind=none". "only-hardware-queue" leaves interface with only hardware only-hardware-queue"
transmit descriptor ring buffer which acts as a queue in itself. Usually, at least 100 packets can be queued for transmit in transmit descriptor ring buffer.
Transmit descriptor ring buffer size and the number of packets that can be queued in it varies for different types of ethernet MACs. Having no software
queue is especially beneficial on SMP systems because it removes the requirement to synchronize access to it from different CPUs/cores which is
resource-intensive. Having the possibility to set so it is available only for some ethernet "only-hardware-queue" requires support in an ethernet driver
interfaces mostly found on RouterBOARDs.

A can be beneficial on SMP systems with ethernet interfaces that have support for multiple transmit queues and have a "multi-queue-ethernet-default"
Linux driver support for multiple transmit queues. By having one software queue for each hardware queue there might be less time spent on synchronizing
access to them.

Kinds
Queue kinds are packet processing algorithms. Kind describe which packet will be transmitted next in the line. RouterOS supports the following Queueing
kinds:

FIFO (BFIFO, PFIFO, MQ PFIFO)
RED
SFQ
PCQ

FIFO

These kinds are based on the FIFO algorithm (First-In-First-Out). The difference between and is that one is measured in packets and the PFIFO BFIFO
other one in bytes. These queues use and parameters.pfifo-limit bfifo-limit

Every packet that cannot be enqueued (if the queue is full), is dropped. Large queue sizes can increase latency but utilize the channel better.

MQ-PFIFO is with support for multiple transmit queues. This queue is beneficial on SMP systems with ethernet interfaces that have support for pfifo
multiple transmit queues and have a Linux driver support for multiple transmit queues (mostly on x86 platforms). This kind uses the mq-pfifo-limit
parameter.

RED

Improvement from only-hardware-queue and multi-queue-ethernet-default is present only when there is no "/queue tree" entry with a particular
interface as a parent.

Random Early Drop is a queuing mechanism that tries to avoid network congestion by controlling the . The average queue size is average queue size
compared to two thresholds: a minimum (min) and maximum (max) threshold. If the average queue size (avg) is less than the minimum threshold, no th th q
packets are dropped. When the average queue size is greater than the maximum threshold, all incoming packets are dropped. But if the average queue
size is between the minimum and maximum thresholds packets are randomly dropped with probability P where probability is exact a function of the d
average queue size: P = P (avg – min)/ (max - min). If the average queue grows, the probability of dropping incoming packets grows too. P - d max q th th th max
ratio, which can adjust the packet discarding probability abruptness, (the simplest case P can be equal to one. The 8.2 diagram shows the packet drop max
probability in the RED algorithm.

SFQ

Stochastic Fairness Queuing (SFQ) is ensured by hashing and round-robin algorithms. SFQ is called "Stochastic" because it does not really allocate a
queue for each flow, it has an algorithm that divides traffic over a limited number of queues (1024) using a hashing algorithm.

Traffic flow may be uniquely identified by 4 options (and), so these parameters are used by the SFQ hashing src-address, dst-address, src-port, dst-port
algorithm to classify packets into one of 1024 possible sub-streams. Then round-robin algorithm will start to distribute available bandwidth to all sub-
streams, on each round giving bytes of traffic. The whole SFQ queue can contain 128 packets and there are 1024 sub-streams available. The 8.3 sfq-allot
diagram shows the SFQ operation:

PCQ

PCQ algorithm is very simple - at first, it uses selected classifiers to distinguish one sub-stream from another, then applies individual FIFO queue size and
limitation on every sub-stream, then groups all sub-streams together and applies global queue size and limitation.

PCQ parameters:

pcq-classifier (dst-address | dst-port | src-address | src-port; default: "") : selection of sub-stream identifiers
pcq-rate (number): maximal available data rate of each sub-steam
pcq-limit (number): queue size of single sub-stream (in KiB)
pcq-total-limit (number): maximum amount of queued data in all sub-streams (in KiB)

 It is possible to assign a speed limitation to sub-streams with the option. If "pcq-rate=0" sub-streams will divide available traffic equally.pcq-rate

For example, instead of having 100 queues with 1000kbps limitation for download, we can have one PCQ queue with 100 sub-streams

PCQ has burst implementation identical to Simple Queues and Queue Tree:

pcq-burst-rate (number): maximal upload/download data rate which can be reached while the burst for substream is allowed
pcq-burst-threshold (number): this is the value of burst on/off switch
pcq-burst-time (time): a period of time (in seconds) over which the average data rate is calculated. (This is NOT the time of actual burst)

PCQ also allows using different size IPv4 and IPv6 networks as sub-stream identifiers. Before it was locked to a single IP address. This is done mainly for
IPv6 as customers from an ISP point of view will be represented by /64 network, but devices in customers network will be /128. PCQ can be used for both
of these scenarios and more. PCQ parameters:

pcq-dst-address-mask (number): the size of the IPv4 network that will be used as a dst-address sub-stream identifier
pcq-src-address-mask (number): the size of the IPv4 network that will be used as an src-address sub-stream identifier
pcq-dst-address6-mask (number): the size of the IPV6 network that will be used as a dst-address sub-stream identifier
pcq-src-address6-mask (number): the size of the IPV6 network that will be used as an src-address sub-stream identifier

CoDel

CoDel (Controlled-Delay Active Queue Management) algorithm uses the local minimum queue as a measure of the persistent queue, similarly, it uses a
minimum delay parameter as a measure of the standing queue delay. Queue size is calculated using packet residence time in the queue.

Properties

The following queue kinds CoDel, FQ-Codel, and CAKE available since RouterOS version 7.1beta3.

Property Description

codel-ce-threshold (:)default Marks packets above a configured threshold with ECN.

codel-ecn (:)default no An option is used to mark packets instead of dropping them.

codel-interval (:)default 100ms Interval should be set on the order of the worst-case RTT through the bottleneck giving endpoints sufficient time to
react.

codel-limit (:)default 1000 Queue limit, when the limit is reached, incoming packets are dropped.

codel-target (:)default 5ms Represents an acceptable minimum persistent queue delay.

FQ-Codel

CoDel - Fair Queuing (FQ) with Controlled Delay (CoDel) uses a model to classify incoming packets into different flows and is used randomly determined
to provide a fair share of the bandwidth to all the flows using the queue. Each flow is managed using CoDel queuing discipline which internally uses a FIFO
algorithm.

Properties

Property Description

fq-codel-ce-threshold (def
:)ault

Marks packets above a configured threshold with ECN.

fq-codel-ecn (:)default yes An option is used to mark packets instead of dropping them.

fq-codel-flows (default: 10
)24

A number of flows into which the incoming packets are classified.

fq-codel-interval (: default 1
)00ms

Interval should be set on the order of the worst-case RTT through the bottleneck giving endpoints sufficient time to react.

fq-codel-limit (: default 102
)40

Queue limit, when the limit is reached, incoming packets are dropped.

fq-codel-memlimit
(default:)32.0MiB

A total number of bytes that can be queued in this FQ-CoDel instance. Will be enforced from the parameter.fq-codel-limit

fq-codel-quantum (: default
)1514

A number of bytes used as 'deficit' in the fair queuing algorithm. Default (1514 bytes) corresponds to the Ethernet MTU
plus the hardware header length of 14 bytes.

fq-codel-target (: default 5
)ms

Represents an acceptable minimum persistent queue delay.

CAKE

CAKE - Common Applications Kept Enhanced (CAKE) COBALT (AQM algorithm implemented as a queue discipline (qdisc) for the Linux kernel uses
combining Codel and BLUE) and a variant of DRR++ for flow isolation. In other words, All settings are Cake’s fundamental design goal is user-friendliness.
optional; the default settings are chosen to be practical in most common deployments. In most cases, the configuration requires only a bandwidth
parameter to get useful results,

Properties

Property Description

cake-ack-filter)(default: none

cake-atm)(default: Compensates for ATM cell framing, which is normally found on ADSL links.

cake-autorate-ingress (yes/no,
)default:

Automatic capacity estimation based on traffic arriving at this qdisc. This is most likely to be useful with cellular links,
which tend to change quality randomly. The Bandwidth Limit parameter can be used in conjunction to specify an
initial estimate. The shaper will periodically be set to a bandwidth slightly below the estimated rate. This estimator
cannot estimate the bandwidth of links downstream of itself.

cake-bandwidth)(default: Sets the shaper bandwidth.

cake-diffserv)(default: diffserv3 CAKE can divide traffic into "tins" based on the Diffserv field:

diffserv4 Provides a general-purpose Diffserv implementation with four tins: Bulk (CS1), 6.25% threshold,
generally low priority. Best Effort (general), 100% threshold. Video (AF4x, AF3x, CS3, AF2x, CS2, TOS4,
TOS1), 50% threshold. Voice (CS7, CS6, EF, VA, CS5, CS4), 25% threshold.
diffserv3 (default) Provides a simple, general-purpose Diffserv implementation with three tins: Bulk (CS1),
6.25% threshold, generally low priority. Best Effort (general), 100% threshold. Voice (CS7, CS6, EF, VA,
TOS4), 25% threshold, reduced Codel interval.

cake-flowmode (dsthost/dual-
dsthost/dual-srchost/flowblind
/flows/hosts/srchost/triple-

)isolate, default: triple-isolate

flowblind - Disables flow isolation; all traffic passes through a single queue for each tin.
srchost - Flows are defined only by source address.
dsthost Flows are defined only by destination address.
hosts - Flows are defined by source-destination host pairs. This is host isolation, rather than flow isolation.
flows - Flows are defined by the entire 5-tuple of source address, a destination address, transport protocol,
source port,and destination port. This is the type of flow isolation performed by SFQ and fq_codel.
dual-srchost Flows are defined by the 5-tuple, and fairness is applied first over source addresses, then over
individual flows. Good for use on egress traffic from a LAN to the internet, where it'll prevent anyone LAN host
from monopolizing the uplink, regardless of the number of flows they use.
dual-dsthost Flows are defined by the 5-tuple, and fairness is applied first over destination addresses, then over
individual flows. Good for use on ingress traffic to a LAN from the internet, where it'll prevent anyone LAN host
from monopolizing the downlink, regardless of the number of flows they use.
triple-isolate - Flows are defined by the 5-tuple, and fairness is applied over source *and* destination addresses
intelligently (ie. not merely by host-pairs), and also over individual flows.
nat Instructs Cake to perform a NAT lookup before applying flow- isolation rules, to determine the true addresses
and port numbers of the packet, to improve fairness between hosts "inside" the NAT. This has no practical effect
in "flowblind" or "flows" modes, or if NAT is performed on a different host.
nonat (default) The cake will not perform a NAT lookup. Flow isolation will be performed using the addresses
and port numbers directly visible to the interface Cake is attached to.

cake-memlimit)(default: Limit the memory consumed by Cake to LIMIT bytes. By default, the limit is calculated based on the bandwidth and
RTT settings.

cake-mpu)(-64 ... 256, default: Rounds each packet (including overhead) up to a minimum length BYTES.

cake-nat (default: no) Instructs Cake to perform a NAT lookup before applying a flow-isolation rule.

cake-overhead (-64 ... 256,
)default:

Adds BYTES to the size of each packet. BYTES may be negative.

cake-overhead-scheme (default:
)

cake-rtt)(default: 100ms Manually specify an RTT. Default 100ms is suitable for most Internet traffic.

cake-rtt-scheme (datacentre
/internet/interplanetary/lan
/metro/none/oceanic/regional

)/satellite, default:

datacentre - For extremely high-performance 10GigE+ networks only. Equivalent to RTT 100us.
lan - For pure Ethernet (not Wi-Fi) networks, at home or in the office. Don't use this when shaping for an Internet
access link. Equivalent to RTT 1ms.
metro - For traffic mostly within a single city. Equivalent to For traffic mostly within a RTT 10ms. regional
European-sized country. Equivalent to RTT 30ms.
internet (default) This is suitable for most Internet traffic. Equivalent to RTT 100ms.
oceanic - For Internet traffic with generally above-average latency, such as that suffered by Australasian
residents. Equivalent to RTT 300ms.
satellite - For traffic via geostationary satellites. Equivalent to RTT 1000ms.
interplanetary - So named because Jupiter is about 1 light-hour from Earth. Use this to (almost) completely
disable AQM actions. Equivalent to RTT 3600s.

cake-wash)(default: no Apply the wash option to clear all extra DiffServ (but not ECN bits), after priority queuing has taken place.

Interface Queue

/queue interface

Before sending data over an interface, it is processed by the queue. This sub-menu lists all available interfaces in RouterOS and allows to change queue
type for a particular interface. The list is generated automatically.

[admin@MikroTik] > queue interface print
Columns: INTERFACE, QUEUE, ACTIVE-QUEUE
INTERFACE QUEUE ACTIVE-QUEUE
0 ether1 only-hardware-queue only-hardware-queue
1 ether2 only-hardware-queue only-hardware-queue
2 ether3 only-hardware-queue only-hardware-queue
3 ether4 only-hardware-queue only-hardware-queue
4 ether5 only-hardware-queue only-hardware-queue
5 ether6 only-hardware-queue only-hardware-queue
6 ether7 only-hardware-queue only-hardware-queue
7 ether8 only-hardware-queue only-hardware-queue
8 ether9 only-hardware-queue only-hardware-queue
9 ether10 only-hardware-queue only-hardware-queue
10 sfp-sfpplus1 only-hardware-queue only-hardware-queue
11 wlan1 wireless-default wireless-default
12 wlan2 wireless-default wireless-default

Queue load visualization in GUI
In Winbox and Webfig, a green, yellow, or red icon visualizes each Simple and Tree queue usage based on max-limit.

0% - 50% of max-limit used

50% - 75% of max-limit used

75% - 100% of max-limit used

	Queues

