
Sending temperature readings from the TG-BT5-OUT tag to
ThingsBoard

Introduction
Our Bluetooth tag model has a temperature sensor built in. This means that it can be used to measure the surrounding temperature.TG-BT5-OUT

The temperature's value is "written" into the advertising payload that the tag is going to broadcast over Bluetooth advertising channels. Based on how you
configure the tag, the tag can broadcast the payload periodically or/and when a trigger is detected. You can find more information about the tag's
configuration options in and guides.iOS Android Beacon Manager

You can see/display the payloads using our model under tab:KNOT IoT>Bluetooth>Advertising reports

The payloads will be shown in the "Advertisement (hex)" field and they will be in the format.hexadecimal

When the tag is configured in the MikroTik format, the payload's 14th and 15th octets indicate the temperature (ambient temperature in Celsius in signed
) that was "sensed" at the moment of the broadcast.16-bit integer [twos complement] 8.8 fixed point format

An example of the payload in MikroTik's format is shown below:

15ff4f09010032a500000000ffff bd59540000615019

Please note that all multi-byte values in the payload are in little-endian. So, if #14 and #15 octets indicate the temperature as " " → you will need to 50 19
switch octets places, to 0x .1950

 temperature:

We've captured the temperature as 0x (hex.) → (dec.). To get the actual temperature value, divide the result by 256 → 6480/256=1950 6480 .25.31 C

 temperature:

We've captured the temperature as 0x (hex.). Keep in mind that the →FE80 twos-complement format is used (decimal from signed 2's complement)-384 .
To get the actual temperature value, divide the result by 256 → -384/256=-1.5 C.

With this knowledge, we can then utilize RouterOS scripting to structure a message out of the received payloads and send it to the MQTT/HTTP server. It
is suggested for the server to be responsible for the data conversion from format to format. if you are willing to load the hexadecimal decimal But!
RouterOS device, you can perform value conversion to format using RouterOS scripting (it will load the device and can affect hexadecimal decimal
RouterOS performance → we advise converting values on the server and not on the RouterOS). In this guide, we will achieve the results using MQTT post
to .ThingsBoard

ThingsBoard server and MQTT configuration
You will require to have a ThingsBoard server up and running. You can find useful information on how to set up your server by following the . You can link
install the server locally onto a machine or use their cloud solution.

After you have the server ready, you will need to configure it to be able to receive MQTT messages. Please follow the " " link to ThingsBoard configuration
set up your "device".

https://mikrotik.com/product/tg_bt5_out
https://help.mikrotik.com/docs/display/UM/MikroTik+Beacon+Manager+for+iOS+devices#heading-Advertismenetsettings
https://help.mikrotik.com/docs/display/UM/MikroTik+Beacon+Manager+for+Android+devices#heading-Beaconsettings
https://mikrotik.com/product/knot
https://thingsboard.io/
https://thingsboard.io/docs/user-guide/install/installation-options/
https://help.mikrotik.com/docs/display/UM/MQTT+and+ThingsBoard+configuration#heading-Thingsboardconfiguration

RouterOS configuration
Please check the link over on how you can set up your MQTT broker depending on the device credential used by the ThingsBoard server. here

After setting up your broker, confirm that the Bluetooth tag is broadcasting information as shown in the picture above under the IoT>Bluetooth>Advertising
 tab.reports

System>Script

Paste in the script below (under):System>Scripts>Add

Required packages: iot

################################ Configuration ################################
Name of an existing MQTT broker that should be used for publishing
 :local broker "tb"

MQTT topic where the message should be published
 :local topic "v1/devices/me/telemetry"

 # Interface whose MAC should be used as 'Locator ID'
:local locatorIface "ether1"

POSIX regex for filtering advertisement Bluetooth addresses. E.g. "^BC:33:AC"
would only include addresses which start with those 3 octets.
To disable this filter, set it to ""
:local addressRegex "2C:C8:1B:4B:BB:0A"

POSIX regex for filtering Bluetooth advertisements based on their data. Same
usage as with 'addressRegex'.
:local advertisingDataRegex ""

Signal strength filter. E.g. -40 would only include Bluetooth advertisements
whose signal strength is stronger than -40dBm.
To disable this filter, set it to ""
:local rssiThreshold ""

####The lines below are used for the data conversion from hex to dec###

 :global invertU16 do={
 :local inverted 0
 :for idx from=0 to=15 step=1 do={
 :local mask (1 << $idx)
 :if ($1 & $mask = 0) do={
 :set $inverted ($inverted | $mask)
 }
 }
 return $inverted
 }

 :global le16ToHost do={
 :local lsb [:pick $1 0 2]
 :local msb [:pick $1 2 4]

 :return [:tonum "0xmsblsb"]
 }
 :local from88 do={
 :global invertU16
 :global le16ToHost
 :local num [$le16ToHost $1]

 # Handle negative numbers
 :if ($num & 0x8000) do={
 :set num (-1 * ([$invertU16 $num] + 1))
 }

https://help.mikrotik.com/docs/display/UM/MQTT+and+ThingsBoard+configuration#heading-MQTTBroker

 # Convert from 8.8. Scale by 1000 since floating point is not supported
 :return (($num * 125) / 32)
 }

################################## Bluetooth ##################################
:put ("[*] Gathering Bluetooth info...")
:global btOldestAdvertisementTimestamp
:if ([:typeof $btOldestAdvertisementTimestamp] = "nothing") do={
 # First time this script has been run since booting, need to initialize
 # persistent variables
 :set $btOldestAdvertisementTimestamp 0
}
:local btProcessingStart [/system clock get time]
:local advertisements [/iot bluetooth scanners advertisements print detail \
 as-value where \
 epoch > $btOldestAdvertisementTimestamp and \
 address ~ $addressRegex and \
 data ~ $advertisingDataRegex and \
 rssi > $rssiThreshold
]
:local advJson ""
:local advCount 0
:local advSeparator ""
:local lastAdvTimestamp 0
Remove semicolons from MAC/Bluetooth addresses
:local minimizeMac do={
 :local minimized
 :local lastIdx ([:len $address] - 1)
 :for idx from=0 to=$lastIdx step=1 do={
 :local char [:pick $address $idx]
 :if ($char != ":") do={
 :set $minimized "$minimized$char"
 }
 }
 :return $minimized
}

:foreach adv in=$advertisements do={
 :local address ($adv->"address")
 :local ts ($adv->"epoch")
 :local rssi ($adv->"rssi")
 :local ad ($adv->"data")
 :local tempf [:pick ($adv->"data") 28 32]

#The line below will set temperature in hexadecimal format, like "0x1950"
 :local temp ([:pick $tempf 2 4].[:pick $tempf 0 2])

#The line below will set temperature in decimal format, like "25313". It is commented with "#", so if you wish to use it instead of the
hexadecimal format value, comment the line above and uncomment the line below > remove "#" from the line below and add "#" to
the line above.

:local temp [$from88 [:pick $ad 28 32]]

 :local obj "{\
 \
 \"ts\":$ts,\
 \"values\":{\
 \"id\":\"$[$minimizeMac address=$address]\",\
 \"rssi\":\"$rssi\",\
 \"temp\":\"$temp\",\
 \"ad\":\"$ad\"\
 }\
 }"
 :set $advCount ($advCount + 1)
 :set $lastAdvTimestamp $ts
 # Ensure that the last object is not terminated by a comma
 :set $advJson "$advJson$advSeparator$obj"
 :if ($advSeparator = "") do={
 :set $advSeparator ","}
}

:if ($advCount > 0) do={

 :set $btOldestAdvertisementTimestamp $lastAdvTimestamp

}

:put ("[*] Found $advCount new advertisements \
 (processing time: $[([/system clock get time] - $btProcessingStart)])")

#################################### MQTT #####################################
:local message \
 "[$advJson]"
:log info "$message";
:put ("[*] Total message size: $[:len $message] bytes")
:put ("[*] Sending message to MQTT broker...")
/iot mqtt publish broker=$broker topic=$topic message=$message
:put ("[*] Done")

Change the broker's name that you have chosen for the MQTT broker within the quotation marks (in our example, we called it):tb

 :local broker "tb"

The default topic used by the ThingsBoard is (you do not have to change it):

 :local topic "v1/devices/me/telemetry"

Change the MAC address of the tag that you wish to monitor (in our example, we have the MAC address):2C:C8:1B:4B:BB:0A

:local addressRegex "2C:C8:1B:4B:BB:0A"

The lines below will take the payload's 14th and 15th octets and "re-structure" the values from " " to " " (per our example from the ABCD CDAB Introduction
section, from " " to " ") → basically structure the message with temperature in format:5019 1950 hexadecimal

 :local tempf [:pick ($adv->"data") 28 32]

 :local temp ([:pick $tempf 2 4].[:pick $tempf 0 2])

Your second option is to convert the temperature from to format using RouterOS (if you want to keep hexadecimal format - ignore hexadecimal decimal
this step). This can be achieved by "commenting" (adding "#") to the previous line (or removing it altogether) and "uncommenting" (removing the "#") from
the upcoming line, like so:

:local temp ([:pick $tempf 2 4].[:pick $tempf 0 2])

 :local temp [$from88 [:pick $ad 28 32]]

Because of the fact that floating point is not supported → every calculation behind a decimal point will be "rounded up" to a whole number. This is why the
script will calculate the temperature (multiplied by) and as a result, the temperature will look like " " (that would mean 25 546 C). scaled by 1000 1000 25546 .
You can add additional scripting to set up a decimal point (but remember that additional manipulations will load the device) and you can also do it on the
server itself.

The MQTT message that we are posting is structured in the following section (you do not have to change it):

 :local obj "{\

 \

 \"ts\":$ts,\

 \"values\":{\

 \"id\":\"$[$minimizeMac address=$address]\",\

 \"rssi\":\"$rssi\",\

 \"temp\":\"$temp\",\

 \"ad\":\"$ad\"\

 }\

 }"

The message that is structured per the example above will be displayed in JSON (the only real value we are going to focus on are "timestamp"→ "ts" and
"temperature"→ "temp", so feel free to remove additional parameters). If the temperature is calculated in format, the message would look like hexadecimal
this:

[

 {

 "ts": 1661333913375,

 "values": {

 "id": "2CC81B4BBB0A",

 "rssi": "-43",

 "temp": "1939",

 "ad": "15ff4f0901002de0ffff010000003919877c54000061"

 }

 }

]

If the temperature is calculated in format, it would look like this:decimal

[

 {

 "ts": 1661333913375,

 "values": {

 "id": "2CC81B4BBB0A",

 "rssi": "-43",

 "temp": " ",25222

 "ad": "15ff4f0901002de0ffff010000003919877c54000061"

 }

 }

]

Save the script and run it:

[admin@MikroTik] > system script run name_of_the_script
[*] Gathering system info...
[*] Gathering Bluetooth info...
[*] Found 1 new advertisements (processing time: 00:00:00)
[*] Total message size: 134 bytes
[*] Sending message to MQTT broker...

[*] Done
[admin@MikroTik] >

System>Scheduler

Apply a to the script to run it with a required interval. If you have set up a scheduler to run the script, for example, every 2 minutes, scheduler Please note!
it will mean that every received payload (broadcasted by the tag) during the 2-minute interval will be "structured" into the MQTT message. You will, most
likely, not need to know the temperature of the tag every 2-5 seconds, so you can either change the MQTT message that is structured to only post the
latest temperature reading or just change the setting to " " (that way, the Bluetooth scanner will IoT>Bluetooth>Scanners Filter duplicates keep-newest
overwrite every new report from each individual tag's MAC address) and the script will only post 1 payload that was "scanned" at the moment when the
script ran.

Results

You will be able to verify the results under the section under the device you have created for ThingsBoard (in our example, we called the Latest telemetry
"device"):KNOT

https://help.mikrotik.com/docs/display/ROS/Scheduler

The result is a successful MQTT post! From the screenshot above, we can see that the parameter is in format.temp hexadecimal

But! we would like to display the temperature (parameter) in format and we would also like to display the data easier to perceive.temp decimal

And in case, we have posted the temperature in the format, we would like to set up a decimal point.decimal

This is where " " come into play.Widgets

ThingsBoard widgets
After you receive the value under the section, you can show it on the " ".Latest telemetry Widget

The Javascripts used in the widgets should be able to convert the data from the hexadecimal format to the decimal format.

Select the value you wish to display in the widget (in our example,) and click on the " " button:temp Show on widget

You will be able to browse the widgets in the window that pops up:

https://thingsboard.io/docs/user-guide/ui/widget-library/
https://thingsboard.io/docs/user-guide/ui/widget-library/

Click on the " " button:Add to dashboard

Select a new dashboard to be created or choose an existing dashboard that you already have pre-installed/pre-made. Click on " .Add"

By applying the checkbox " " you will be redirected to the dashboard menu or you can go there manually.Open dashboard

We have also added a second table and, as a result, our test dashboard looks like this:

In case we post the date in formathexadecimal

Both tables will display the value in the as "17f9" (raw value as we've sent it from the KNOT → the javascript for the table did not hexadecimal format
convert it to a decimal value yet).

Because of the fact that the values in our tag's payload are in signed 8.8 fixed point format (keeping in mind), we will need to the twos-complement format
add additional javascript code to "convert" the data to the decimal value.

Enter the " " mode and click on the " " button:Edit Edit widget

Click on the " " button to edit the parameter :edit temp

In the popup window " " enable the checkbox " " and input the code shown below:Data key configuration Use data post-processing function

The code:

function f(p){

this.p = p;

}

f.prototype.calculate = function(mes){

let intValue = parseInt(mes, 16);

let sign = 1;

if(intValue & 0x8000) {

intValue = (~intValue + 1) & 0xFFFF;

sign = -1;

}

intValue = sign * intValue / Math.pow(2, this.p);

return intValue;

}

let res = new f(8);

return (res.calculate(value));

Save and apply the changes.

Do the same steps for the second/first table.

In case we post the date in formatdecimal

You will see the results as:

Do the exact same steps from the example above, but for this scenario, :divide the result by "1000"

Save and apply the changes.

Verification

The end result should look like this:

Now both tables show .decimal temperature

	Sending temperature readings from the TG-BT5-OUT tag to ThingsBoard

