
1.
2.
3.
4.

1.
2.

MikroTik Tag advertisement formats

Introduction
MikroTik packet structure

MikroTik PDU Payload structure
Example
Script for decoding

iBeacon packet structure
iBeacon PDU Payload structure

Eddystone-TLM packet structure
Eddystone-TLM PDU Payload structure

Eddystone-UID packet structure
Eddystone-UID PDU Payload structure

Introduction
TG-BT5-XX tags can operate in 4 different modes:

Factory sleep mode
Configuration mode
Advertising mode
Upgrade mode

In advertising mode, the tag will broadcast information about itself in Bluetooth advertising packets. The information depends on the advertising packet
type.

At the moment, these are all the supported types that can be configured using the MikroTik Beacon Manager app:

Eddystone-TLM, , MikroTik, and .Eddystone-UID iBeacon

Bluetooth technology uses 2 types of channels (each using different frequencies) during the data exchange.

Data channels dedicated to data transmission
Advertise channels dedicated to advertising

There are 40 unique bands (channels) and each band has a 2 MHz separation. 37, 38, and 39 channels are used for advertising, and 0-36 are used for
data transmission.

During the advertising process, the BLE advertising packet is broadcasted. This packet contains the Preamble, Access Address, PDU and CRS fields.

The Preamble and Access Address fields help the receiver detect frames. CRS field is used to check errors. PDU defines the packet itself.

MikroTik tags support legacy Non-Connectable Non-Scannable Undirected advertising (). The Payload, in this case, consists of "AdvA" ADV_NOCONN_IND

(a field that contains information about the advertiser's address) and "AdvData" (a field that contains data information) fields.

1 octet = 1 byte = 8 bits

Preamble 1 octet

Access-Address 4 octets

PDU
PDU Header = 2 octets
PDU Payload = AdvA (6 octets)+AdvData (0...31 octets)

CRS 3 octets

MikroTik packet structure
"AdvData" field structure (max 31 octets/bytes):

Length length of the payload 1 octet ()15

https://github.com/google/eddystone/tree/master/eddystone-tlm
https://github.com/google/eddystone/tree/master/eddystone-uid
https://developer.apple.com/ibeacon/

1.
2.
3.
4.
5.
6.

Type manufacturer specific data 1 octet ()ff

Manufacture
rData

company identifier 2 octets ()4F09

Version the version of this advertisement
structure

1 octet (uint)

UserData user-configured part of the payload 1 octet (uint)

Secret optionally encrypted (AES-ECB) part
of the payload secret: salt (for encryption) = 2 octets (uint)

secret: acceleration (acceleration in signed 8.8 fixed point format - acceleration of all 3 axis
(0=x, 1=y, 2=z)) = 6 octets (uint)
secret: temperature (ambient temperature in Celsius in signed 8.8 fixed point format) = 2
octet (int)
secret: uptime (uptime in seconds) = 4 octets (uint)
secret: flags (bit-mask of flags) = 1 octet (uint)
secret: batteryPercentage (battery level in percent) = 1 octet (uint)

A detailed example of how you can convert payload's values to values will be shown later in the section.hexadecimal decimal PDU payload structure

UserData and Secret fields are configured with the help of . In the "UserData" section, the parameter that controls whether the "Secret" is encrypted flags

or not is called . When , it means the secret is not encrypted (1st bit in 6th octet would be set to 0), and when FLAG_ENCRYPTED FLAG_ENCRYPTED=0 FLAG

, it means the secret is encrypted (1st bit in 6th octet would be set to 1)._ENCRYPTED=1

In the "Secret" section, there are 6 (21st octet):flags

FLAG_REED_SWITCH (1st bit - if set to 1, shows)that the reed switch was closed at the moment of advertising
FLAG_ACCEL_TILT (2nd bit - if set to 1, shows that the advertisement was sent by tilting the device)
FLAG_ACCEL_FREE_FALL (3d bit - if set to 1, shows that the advertisement was sent by dropping the device)
FLAG_IMPACT_X (4th bit - if set to 1, shows that there was an impact on the x-axis at the moment of advertising)
FLAG_IMPACT_Y (5th bit - if set to 1, shows that there was an impact on the y-axis at the moment of advertising)
FLAG_IMPACT_Z (6th bit - if set to 1, shows that there was an impact on the z-axis at the moment of advertising)

For example, if you see that the 21st octet of the hex message is "02" (when converting the value "02" from to it is "0010" → 2nd bit is hexadecimal binary
set to 1) → it means that the device was tilted. If you see "04" ("04" to is "0100" → 3d bit is set to 1) → it means that the device was dropped hex bin
(freefalling triggered). If you see "38" (to it is "00111000" → 4th, 5th, and 6th bits are set to 1) → it means that when the advertisement was sent, hex bin
the accelerometer detected an impact/wake-up on all 3 x/y/z-axis.

More examples (for 21 octet's value):

"08" is the impact on just the x-axis;
"18" is the impact on the x and y-axis;
"28" is the impact on the x and z-axis;
"10" is the impact on just the y-axis;
"30" is the impact on y and z-axis;
"20" is the impact on just the z-axis.

MikroTik PDU Payload structure

0 15 Length length of the payload

1 FF Type manufacturer specific data

2 4F Company identifier MikroTik

3 09 Company identifier MikroTik

4 01 Version the version of this advertisement structure

5 00 UserData user-configured part of the payload

Please note that all multi-byte values are in little-endian. Meaning, that if, for example, you want to get the temperature value and #14 and #15
octets indicate the temperature as "a1 19" ("plus" temperature) → the real temperature value is going to be (0x19a1)/256 = 25.6 C.

6 xx* Secret secret: salt

7 xx* Secret secret: salt

8 xx* Secret secret: acceleration on the X-axis

9 xx* Secret secret: acceleration on the X-axis

10 xx* Secret secret: acceleration on the Y-axis

11 xx* Secret secret: acceleration on the Y-axis

12 xx* Secret secret: acceleration on the Z-axis

13 xx* Secret secret: acceleration on the Z-axis

14 xx* Secret secret: temperature

15 xx* Secret secret: temperature

16 xx* Secret secret: uptime

17 xx* Secret secret: uptime

18 xx* Secret secret: uptime

19 xx* Secret secret: uptime

20 00 Secret secret: flags

21 xx* Secret secret: batteryPercentage

- can vary

Example

An example of the payload configured in MikroTik's format (non-encrypted) would be:

15ff4f090100cea6000000000200a01c91085700005f

15ff4f09 (first 4 octets) → Length (0x15 is 21). Type (0xff). Company identifier (0x4f09).hex-to-dec

01 (4th octet) → Current version of the payload's structure. Should be the same for every payload (constant data).

 → Indicates that the payload is not encrypted. "01" would mean it is encrypted.00 (5th octet)

 (6th and 7th octets) → Salt. Each new payload should have a different salt value generated. You can use this value to check whether the identical cea6
payloads are encrypted differently. . If you see that the salt value is identical for two payloads The value itself does not contain any useful information
received during different time intervals, it would mean that the two payloads received are exactly identical. You can calculate the salt value using the same
principle that applies to the uptime calculation (17th to 20th octets) - see below.

 0000 (8th and 9th octets) → acceleration on the X-axis at the moment of the broadcast = . Check acceleration calculation for the Z-axis below.0 m/s2

 (10th and 11th octets) → acceleration on the Y-axis at the moment of the broadcast = . Check acceleration calculation for the Z-axis below.0000 0 m/s2

 (12th and 13th octets) → acceleration on the Z-axis at the moment of the broadcast = . To get the decimal value out of the hex format you 0200 0.0078 m/s2

will need to follow the steps:

As noted before, multi-byte values are in little-endian and that means, to calculate the realm value, you will need to switch octets places (switch
octets order). So the first step is to swap places for the values from 0x to 0x . 0x converted from to is .0200 0002 0002 hexadecimal decimal 02
Keep in mind that acceleration is in signed 8.8 fixed point format (two's complement) and that means that you basically need to divide the result
by "256". The second step is to divide the value by 256 → (0x or)/256 = 0002 hex 02 dec 0.0078 m/s2.
The same calculation principle applies to the acceleration for the X and Y-axis. In our example, they just happen to be 0 → 0x0000/256=0.

 (14th and 15th octets) → temperature detected by the tag in Celsius = . Temperature is in little-endian (as it is a multi-byte value) and it is ina01c 28.625 C si
gned 16-bit integer [twos complement] 8.8 fixed point format, so the same "formula" applies here as well:

0x1ca0/256=28.625 C.

 91085700 (16th to 19th octets) → tag's uptime in seconds = . 0x5703825 s 91085700 is in little-endian, so just swap the octets to 0x00570891 and the result
is 5703825 in decimal. That is 1584.395833 hours or 66-day uptime.

00 (20th octet) → trigger (flag) that sent the payload. If it is " " it means that no trigger was detected and that it is just a periodically broadcasted payload 00
(based on the advertisement interval configured for the tag). If the value would be " " it would mean that the device was dropped (freefalling triggered). 04
You can find more information on the "flags" and the "Secret" section above in the section.packet structure

 5f (21st octet) → battery percentage of the tag = . 0x from hex to dec is 95.95 % 5f

Script for decoding

Add a new script under the " " tab and import the script there (for non-encrypted payloads).System>Scripts

POSIX regex for filtering advertisement Bluetooth addresses. E.g. "^BC:33:AC"
would only include addresses which start with those 3 octets.
To disable this filter, set it to ""
:local addressRegex "2C:C8:1B:4B:BB:0A"

POSIX regex for filtering Bluetooth advertisements based on their data. Same
usage as with 'addressRegex'.
:local advertisingDataRegex ""

Signal strength filter. E.g. -40 would only include Bluetooth advertisements
whose signal strength is stronger than -40dBm.
To disable this filter, set it to ""
:local rssiThreshold ""

################################## Bluetooth ##################################
:global invertU16 do={
 :local inverted 0
 :for idx from=0 to=15 step=1 do={
 :local mask (1 << $idx)
 :if ($1 & $mask = 0) do={
 :set $inverted ($inverted | $mask)
 }
 }
 return $inverted
}

:global le16ToHost do={
 :local lsb [:pick $1 0 2]
 :local msb [:pick $1 2 4]

 :return [:tonum "0xmsblsb"]
}

:local le32ToHost do={
 :local lsb [:pick $1 0 2]
 :local midL [:pick $1 2 4]
 :local midH [:pick $1 4 6]
 :local msb [:pick $1 6 8]

 :return [:tonum "0xmsbmidH$midL$lsb"]
}

:local from88 do={
 :global invertU16
 :global le16ToHost
 :local num [$le16ToHost $1]

 # Handle negative numbers
 :if ($num & 0x8000) do={
 :set num (-1 * ([$invertU16 $num] + 1))
 }

Starting with v , you can use the section or/and feature to view decoded values!7.11 Peripheral Device Decode-ad

https://help.mikrotik.com/docs/display/ROS/Bluetooth#Bluetooth-PeripheralDevices
https://help.mikrotik.com/docs/display/ROS/Bluetooth#Bluetooth-Decode-ad

 # Convert from 8.8. Scale by 1000 since floating point is not supported
 :return (($num * 125) / 32)
}

:local flagStr do={
 :local str ""

 :if ($1 & 0x01) do={ :set $str " switch" }
 :if ($1 & 0x02) do={ :set $str "$str tilt" }
 :if ($1 & 0x04) do={ :set $str "$str free_fall" }
 :if ($1 & 0x08) do={ :set $str "$str impact_x" }
 :if ($1 & 0x10) do={ :set $str "$str impact_y" }
 :if ($1 & 0x20) do={ :set $str "$str impact_z" }

 :if ([:len $str] = 0) do={ :return "" }

 :return [:pick $str 1 [:len $str]]
}

Find fresh Bluetooth advertisements
:global btOldestAdvertisementTimestamp
:if ([:typeof $btOldestAdvertisementTimestamp] = "nothing") do={
 # First time this script has been run since booting, need to initialize
 # persistent variables
 :set $btOldestAdvertisementTimestamp 0
}
:local advertisements [/iot bluetooth scanners advertisements print detail \
 as-value where \
 epoch > $btOldestAdvertisementTimestamp and \
 address ~ $addressRegex and \
 data ~ $advertisingDataRegex and \
 rssi > $rssiThreshold
]
:local advCount 0
:local lastAdvTimestamp 0
:local advJson ""
:local advSeparator ""

Remove semicolons from MAC/Bluetooth addresses
:local minimizeMac do={
 :local minimized
 :local lastIdx ([:len $address] - 1)
 :for idx from=0 to=$lastIdx step=1 do={
 :local char [:pick $address $idx]
 :if ($char != ":") do={
 :set $minimized "$minimized$char"
 }
 }
 :return $minimized
}

:foreach adv in=$advertisements do={
 :local address ($adv->"address")
 :local rssi ($adv->"rssi")
 :local epoch ($adv->"epoch")
 :local ad ($adv->"data")
 :local version [:tonum "0x$[:pick $ad 8 10]"]
 :local encrypted [:tonum "0x$[:pick $ad 10 12]"]
 :local salt [$le16ToHost [:pick $ad 12 16]]
 :local accelX [$from88 [:pick $ad 16 20]]
 :local accelY [$from88 [:pick $ad 20 24]]
 :local accelZ [$from88 [:pick $ad 24 28]]
 :local temp [$from88 [:pick $ad 28 32]]
 :local uptime [$le32ToHost [:pick $ad 32 40]]
 :local flags [:tonum "0x$[:pick $ad 40 42]"]
 :local bat [:tonum "0x$[:pick $ad 42 44]"]

 :put ("$advCount: \
 address=$address \
 ts=$epoch \
 rssi=$rssi \
 version=$version \
 encrypted=$encrypted \
 salt=$salt \
 accelX=$accelX \
 accelY=$accelY \
 accelZ=$accelZ \
 temp=$temp \
 uptime=$uptime \
 flags=\"$[$flagStr $flags]\" \
 bat=$bat" \
)
 :set $advCount ($advCount + 1)
 :set $lastAdvTimestamp $epoch
}
:if ($advCount > 0) do={
 :set $btOldestAdvertisementTimestamp $lastAdvTimestamp
}

The only line that you need to alter is the:

:local addressRegex "2C:C8:1B:4B:BB:0A"

line, where you need to input the MAC address of the tag.

Save the script with whichever name you like, for example, .decode

Run the script via the command line interface (" " button in Winbox/Webfig):New Terminal

Example

[admin@MikroTik] > system script run decode
0: address=2C:C8:1B:4B:BB:0A ts=1662553431348 rssi=-45 version=1 encrypted=0 salt=57919 accelX=3 accelY=-35
accelZ=-70 temp=25535 uptime=1046174 flags="" bat=99
1: address=2C:C8:1B:4B:BB:0A ts=1662553436349 rssi=-40 version=1 encrypted=0 salt=24154 accelX=-19 accelY=-23
accelZ=0 temp=25546 uptime=1046179 flags="" bat=99
2: address=2C:C8:1B:4B:BB:0A ts=1662553446351 rssi=-37 version=1 encrypted=0 salt=37822 accelX=-15 accelY=35
accelZ=15 temp=25550 uptime=1046189 flags="" bat=99

As you can see from the example above, the script will "translate" all payloads from a format to a format and print them into the hexadecimal decimal
terminal.

You can also alter the script further to structure a message out of the "already decoded" values and post it to an EMAIL, MQTT, or HTTP server of your
choice please keep in mind that it might load the device more. So you need to test the performance when running the script. It will be easier on but!
RouterOS resources when the decoding is done on the server side.

iBeacon packet structure
iBeacon is one of the supported advertising packet types. You can find more information about the protocol following the .link

The PDU Payload, in this case, consists of "AdvA" (that is 6 octets long) and "AdvData" (a field that contains data information) fields. Legacy Bluetooth
devices can only support 31 byte-long beacon messages. UUID is 16 byte-long (MikroTik default UID=b2b98de4-c81c-47c2-b14e-791b3e5587ec).

Because of the fact that floating point is not supported → every calculation behind a decimal point will be "rounded up" to a whole number. This
is why the script will calculate the temperature and acceleration values (multiplied by).scaled by 1000 1000
So, if you see the temperature as , the real temperature is (25546/1000) and if you see , the real acceleration temp=25546 25.546 C accelZ=15
against the z-axis will be (15/1000).0.015 m/s2

https://en.wikipedia.org/wiki/IBeacon

"AdvData" field structure:

ManufacturerData company identifier 4 octets ()1aff4c00

BeaconType a secondary identifier 1 octet (const)

RemainingDataLength defines the remaining length for the payload in bytes 1 octet (const)

UserData user-configured part of the payload
Proximity UUID () = 16 octets (uint)universally unique identifier
Major Number (specific group identifier) = 2 octets (uint)
Minor Number (specific beacon identifier) = 2 octets (uint)

TxPower indicates the signal strength at one meter from the device 1 octet (int)

iBeacon PDU Payload structure

0 1a ManufacturerData company identifier

1 ff ManufacturerData company identifier

2 4c ManufacturerData company identifier

3 00 ManufacturerData company identifier

4 02 BeaconType a secondary identifier

5 21 RemainingDataLength defines the remaining length for the payload in bytes

6 xx* UserData Proximity UUID

7 xx* UserData Proximity UUID

8 xx* UserData Proximity UUID

9 xx* UserData Proximity UUID

10 xx* UserData Proximity UUID

11 xx* UserData Proximity UUID

12 xx* UserData Proximity UUID

13 xx* UserData Proximity UUID

14 xx* UserData Proximity UUID

15 xx* UserData Proximity UUID

16 xx* UserData Proximity UUID

17 xx* UserData Proximity UUID

18 xx* UserData Proximity UUID

19 xx* UserData Proximity UUID

20 xx* UserData Proximity UUID

21 xx* UserData Proximity UUID

22 xx* UserData Major Number

23 xx* UserData Major Number

24 xx* UserData Minor Number

25 xx* UserData Minor Number

26 xx* TxPower indicates the signal strength at one meter from the device

* - can vary

Eddystone-TLM packet structure

Eddystone-TLM is one of the supported advertising packet types. You can find more information about the protocol following the .link

The PDU Payload, in this case, consists of "AdvA" (that is 6 octets long) and "AdvData" (a field that contains data information) fields. MikroTik default
CompleteUUID=03 03 aa fe; ServiceData=11 16 aa fe.

"AdvData" field structure:

CommonPaylo
ad

part of the advertisement payload that is common for all Eddystone's
frame types CompleteUUID () = 4 octets universally unique identifier

(const)
ServiceData (data type) = 4 octets (const)16 bit UUID
FrameType (Value =) = 1 octet (const)0x20

TlmPayload Eddystone-TLM frame payload
Version (TLM version) = 1 octet (const)
BatteryVoltageMv (Battery voltage, 1 mV/bit) = 2 octets
(uint)
TemperatureC (Beacon temperature in Celsius) = 2
octets (int)
AdvertisementCount (Advertising PDU count) = 4
octets (uint)
UptimeCounter (Time since power-on or reboot) = 4
octets (uint)

Eddystone-TLM PDU Payload structure

0 03 CommonPayload CompleteUUID

1 03 CommonPayload CompleteUUID

2 aa CommonPayload CompleteUUID

3 fe CommonPayload CompleteUUID

4 11 CommonPayload ServiceData

5 16 CommonPayload ServiceData

6 aa CommonPayload ServiceData

7 fe CommonPayload ServiceData

8 20 CommonPayload FrameType

9 00 TlmPayload Version

10 xx* TlmPayload BatteryVoltageMv

11 xx* TlmPayload BatteryVoltageMv

12 xx* TlmPayload TemperatureC

13 xx* TlmPayload TemperatureC

14 xx* TlmPayload AdvertisementCount

15 xx* TlmPayload AdvertisementCount

16 xx* TlmPayload AdvertisementCount

17 xx* TlmPayload AdvertisementCount

18 xx* TlmPayload UptimeCounter

19 xx* TlmPayload UptimeCounter

20 xx* TlmPayload UptimeCounter

21 xx* TlmPayload UptimeCounter

* - can vary

https://github.com/google/eddystone/blob/master/eddystone-tlm/tlm-plain.md

Eddystone-UID packet structure
Eddystone-UID is one of the supported advertising packet types. You can find more information about the protocol following the .link

The PDU Payload, in this case, consists of "AdvA" (that is 6 octets long) and "AdvData" (a field that contains data information) fields. MikroTik default
CompleteUUID=03 03 aa fe; ServiceData=17 16 aa fe.

"AdvData" field structure:

CommonPayl
oad

part of the advertisement payload that is common for all
Eddystone's frame types CompleteUUID () = 4 octets universally unique identifier

(const)
ServiceData (data type) = 4 octets (const)16 bit UUID
FrameType (value =) = 1 octet (const)0x00

UidPayload Eddystone-UID frame payload
Ranging Data (calibrated Tx power at 0 m) = 1 octet (int)
Nspace (unique self-assigned beacon ID namespace) = 10
octets (uint)
Instance (unique ID within the namespace) = 6 octets (uint)
RFU1 (reserved for future use, value=) = 1 octet 0x00

(const)
RFU2 (reserved for future use, value=) = 1 octet 0x00

(const)

Eddystone-UID PDU Payload structure

0 03 CommonPayload CompleteUUID

1 03 CommonPayload CompleteUUID

2 aa CommonPayload CompleteUUID

3 fe CommonPayload CompleteUUID

4 17 CommonPayload ServiceData

5 16 CommonPayload ServiceData

6 aa CommonPayload ServiceData

7 fe CommonPayload ServiceData

8 00 CommonPayload FrameType

9 xx* UidPayload Ranging Data

10 xx* UidPayload Nspace

11 xx* UidPayload Nspace

12 xx* UidPayload Nspace

13 xx* UidPayload Nspace

14 xx* UidPayload Nspace

15 xx* UidPayload Nspace

16 xx* UidPayload Nspace

17 xx* UidPayload Nspace

18 xx* UidPayload Nspace

19 xx* UidPayload Nspace

20 xx* UidPayload Instance

21 xx* UidPayload Instance

https://github.com/google/eddystone/blob/master/eddystone-uid/README.md

22 xx* UidPayload Instance

23 xx* UidPayload Instance

24 xx* UidPayload Instance

25 xx* UidPayload Instance

26 00 UidPayload RFU1

27 00 UidPayload RFU2

* - can vary

	MikroTik Tag advertisement formats

